优势。但水冷需要额外的管路和散热器,让生产制造更复杂、养护更繁琐,这是相对于气冷的一大缺点,而且从欧洲方面的液冷发动机应用而言,冷却水泄露还是一个不小的问题。
由此,在发动机功率要求不大的时候,水冷有多了散热器、管路等等引申出的各种问题就显得很突兀,比气冷发动机重且复杂,就没有什么优越性。功率一定的发动机的体积和重量都不是问题,气冷发动机简单的特点就十分显著,液冷没有任何优势而言。但当发动机功率要求很高的时候,气冷发动机的局限就出来了,大量的散热片不仅不能有效地散热,也大大增加了重量,液冷的系统效率优势就显示出来,系统总重量反而更轻了。
两者之间的互有优劣都让彼此难以放弃自己的想法,都欲让对方接受自己的正确想法,继而引发争论,但争论的结果往往都是让彼此更加确信自己的想法是正确的,可以说争论由始至终都是无效的。所以,“实践是检验真理的唯一标准”,这句话让他们都找到了说服对方的好方法,那就是各自做出成就来比拼一番才行。
工业部和军方都很是明显的指出航空事业首先是要为军事服务,所以研发的机型无非就是速度快、机动性强的战斗机,运力范围大且机动性与经济效益较好的运输机,远中近各种航程的轰炸机、侦查与客运等等应用的飞机都可以慢慢引申出来。两大组的比拼从第一种开始了,那就是战斗机。
对于战斗机来说,从欧洲战争的血与火实践已经可以知道,追求速度和高度是一个永远不变的主题,而且这一主题还将继续下去。气冷星形发动机和液冷直列(包括V形)发动机在战斗机上的优劣之说,都不能脱离对速度和高度的比试。
对于速度来说,增大马力、减小阻力就是不二的法门。
水冷发动机对于提高马力有天然的优势,直列或V形的液冷发动机的一个巨大优势就是体型狭长,这一优势可以为之带来迎风面积小、阻力小的好处。将直列发动机沿机身纵向放在前机身内,机头的整流罩可以保持流线型的气动外形,有利于进一步降低阻力。如此布置以后,使用直列发动机的战斗机看起来就是尖头,这对飞行员的驾驶而言非常有利。
而气冷组的星形发动机要维持良好的气冷,必须把发动机的整个正面暴露在迎面气流里,这样就难以使用整流罩降低阻力,所以星形发动机的战斗机都是钝头。钝头又使座舱前方视野不良,而为了改善视野只能驾驶员的座舱,这反而进一步增加迎风阻力损失了速度。
当在空中飞行时这一缺点经风洞试验后得出的结论来看,这一缺点并不明显,然而飞机要起飞与着陆就显得比较困难,所以在速度上气冷失败了一点点。
两者速度问题都不是很大,差距并不明显,但是在高度上各自的缺点却立马凸显出来了。
高空环境中空气稀薄,活塞式发动机的进气会受到很大的影响,为了保证发动机的有效工作就必须采用一定的措施,用机械增压或涡轮增压成了必然。
机械增压从发动机用机械联动引出一部分功率,驱动空气压缩机,提高进气压力,以改善高空的活塞式发动机的工作效率。机械增压的好处是在任何发动机转速都能有效工作,油门响应快,坏处是吃掉的发动机功率比较多,系统重量也比较大。
涡轮增压不直接从发动机中引出功率,而是在发动机的排气回路中安装一个废气涡轮,带动压缩机完成增压。涡轮增压也要吃掉一点发动机的功率,因为发动机的排气背压增高,发动机出力下降。但涡轮增压比机械增压吃掉的功率要小很多,系统重量轻,可靠性好,坏处是油门响应慢,需要发动机转速上升到一定程度才能正常工作。
后者对战斗机而言并不是问题,战斗机在向上攀爬时,发动机已经高速运转了,启动废气涡轮不是问题。但油门响应是一个问题,所以在战斗机发动机上,必然是涡轮增压和机械增压一起使用两者互补。
当然机械增压和涡轮增压的技术对两大组而言都不是问题,在汽车工业上已经很纯熟应用了增压技术,当然或许也是因为汽车技术的纯熟,而让液冷组更有自信要将液冷继续下去,因为汽车也是液冷的,包括即将运用于铁路交通的内燃机车。当然打败气冷的并不是这些,而是事实。
作为战斗机发动机,涡轮增压的优越性是显然的,当然也是必然的。但涡轮增压却很难用于气冷星形发动机上,由于星形发动机的缸头朝外,所以每个气缸分别进气、分别排气。机械增压为每个气缸的进气回路分别安装压缩机,这估计将是一个巨大的挑战;而还要应用涡轮增压技术,就还要求为每个气缸的排气回路安装废气涡轮,这将大大增加系统的复杂性和成本。
相比之下,直列或V形发动机的缸头一字排开,可以用汇流装置统一进排气,只需要一套集中的机械增压或涡轮增压装置就可以了,大大简化了系统提高了效率。从高空性能来说,直列或V形发动机也比星形发动机有利。而星形发动机如果强行使用两种技术后,也在将彻底失去了它引以为傲的结构简单、质量轻便的优势,变得比液冷式更为复杂庞大臃肿。
更为有利于液冷组的是,不管是机械增压还是涡轮增压,理想情况下都应该对增压后的空气进行中间冷却,以降低温度、提高密度,以便在同样进气压力下,在单位体积内灌进更多的空气,可以和更多的燃料混合燃烧产生更好的动力输出。星形发动机的缸头分别进气,采用中冷比较困难。直列或V形发动机采用统一的汇流装置然后分流到各个气缸,采用中冷就比较方便。从中冷的角度来说,直列或V形发动机又比较有利了。
所以综合起来,液冷组的发动机在战斗机上赢得了全面的胜利,但气冷组并没有就此放弃,因为装备液冷的发动机的战斗机必然会对冷却物质,比如说淡水产生庞大的需求,这极大的限制了它的使用范围,而且气冷的抗战损能力也必然值得注意。
设想一下,如果敌人将液冷式发动机的水冷管道和专用的散热器击中,只要损毁一部分便能让冷却能力丧失,可气冷组的人没有想到敌人为什么能够击中己方的散热器之类的所在部位,为什么不去直接攻击座舱打击飞行员呢?后者更是一个有效的手段,所以液冷与气冷的战斗机并不存在所谓的抗战损率竞争,不需要大量的冷却水和启动环境多样化,这才是气冷组需要考虑到的应用优势所在。
无论怎样,战斗机的发动机应用上,二世为人张宇的建议包括另一个时空的实战检验结果,同样是液冷式战斗机占据了上风,但气冷的也不是一无所成,因为他们还可以运用于第二种飞机类型,对澎湃动力极具要求的运输机需要星形气冷发动机,当然还有更多未知领域需要气冷发动机,未经过大量实践检验是不能得出真理的,气冷的前景同样很广阔。
无论怎样,当气冷组与液冷组这样为了自己的意见而坚持、努力的时候,已经是对自我能力的自信展现,无论成王败寇,都是航空事业的进步,因为这说明自治区的技术人才们已经成长起来了,发展至更多领域后,必将更能带动整体工业的进步,无论是哪一个行业。
当然,这样的结局自然不是最终的结果,当然也不是一个偌大航空动力公司被建立起来的理由,航空动力研究组当初为了一个液冷还是气冷就展开了如此持久激烈的竞争,如今动力公司成立起来了,相信未来的比拼之路还会更长,但目前而言他们都已经有了各自的任务,那就是踏踏实实生产发动机,不管是现在的活塞式还是未来的喷气式。
(看小说到)16977小游戏每天更新好玩的小游戏,等你来发现!